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1. Phys.: Condens. Matter 3 (1991) 3047-3064. Printed in the UK 

REVIEW ARTICLE 

Magnetic gauge transformations in solid-state problems 

P G Harper 
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK 

Received 15 August 1990, in final form 31 Janury 1991 

Abstract. Gauge transformation theory, indispensable in particle physics, is finding a role in 
magnetic dynamics in the solid state. It can allow for the presence of an imposed magnetic 
field on the quantum formulation of translational symmetry, thereby extending lhe range 
and power of Bloch theory applied to crystalline magnetic phenomena. 

The principle is explained and reviewed. along with comments on its application to such 
features as incommensurate and commensurate enumeration of states, magnetic spectra, 
quantum phasing and Rux quantization. 
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1. Introduction 

Gauge transformation theory has for many years provided a principle of considerable 
formal power in particle physics. More recently it  has been discovered by solid-state 
physicists as a means of symmetrizing quantum states of crystal electrons in a magnetic 
field. These states are fundamental to the physics of such basic phenomena as magneto- 
resistance in metals and magneto-optics/transport in semiconductors. Gauge theory is 
also related to magnetic flux quantization, an indispernsablenotion in superconductivity, 
and possibly the quantum Hall effect. At a more mathematical level gauge theory has 
also provided a simple model of an aperiodicdynamical system [l], with fractal features. 

Gauge refers (in this article) to the vector potential nccurring in the dynamics of 
charge in a magnetic field. Both the Lagrange and Hamilton descriptions demand its 
use, and yet the potential is not unique. The magnetic flux through any loop gives 
the loop integral of the potential, and this is recognizably of mechanical significance. 
However thequantumeigenstatesaresensitivetothechoiceofpotentia1,andnot merely 
to within a phase factor as is sometimes believed. Reconciling these two aspects is the 
subject of gauge transformation theory; it can impose a translational symmetry, which 
servesnot only toclassify andenumerate the quantumstates, but also tointroduceuseful 
dynamical features. 

This article first reviews the elementary quantum mechanics of free charge in a 
magnetic field, emphasizing gauge features. The translational constraints of a periodic 
potential, leading to Bloch states, are then considered in the presence of a magnetic 
field, and the Peierls quantization discussed. The translational gauging transformation 
is introduced, with an explanation of magnetic Bloch states. Applications to level 
broadening, magnetic breakdown and flux quantization are discussed. Gauge notions 
in connection with the quantum Hall effect precede a brief digressionon a new approach 
to that problem. It is emphasized that it is the physics that is of interest here but it is 
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necessary (with apologies) to employ the elements of quantum mechanics and solid- 
state theory. A list of symbols is appended. 

2. Free charge in a magnetic Fteld 

A free particle of charge e moving in a magnetic field B is acted on by the Lorenz force 
e i  x B normal to the velocity i. A steady uniform field does no work, nor is there any 
change in kinetic energy, so how therefore are we to explain diamagnetism and other 
magnetic phenomena? The well known answer is quantization, which determines the 
energy spectrum, and statistically distributes the available charge. Our starting point 
therefore is the classical formulation of the chargefield interaction, leading to its 
quantization . 

A magnetic field B is peculiar in that switching it on (and off) is itself appreciably 
part of the dynamics through the induced electromotive force. Changing the magnetic 
flux @ spanning some arbitrary loop C, the EMF is defined and given by 

IC E .  dr = -d@/dt. 

The work done in imposing the magnetic field alters the charge energy; indeed, atomic 
diamagnetism may be introduced in this way, as done, for example, by Feynman [2]. 
But in the end, the flux loop has to be fixed effectively by quantization. It was in fact 
established many years ago by Van Leeuwen that, averaged over classical mechanical 
configurations, the magnetic energy change vanishes. 

Assuming then a time-varying field B, and an electric field E, the accelerative force 
equation becomes for a free charged particle of mass m, 

mi= e? x B + eE (2.2) 

where the induced electric field is to be found from (2.1), that is, by solving V x E = 
-8. Central to its quantization, equation (2.2) must now be cast in Lagrangian form, 
and thisisdone through the introductionof thevector potentialA(r, t ) .  Aformalsolution 
to the above Maxwell equation can then be written as E = -aA/ar where B = V x A. 
Using a simple vector relation, (2.2) becomes 

d(mi + eA)/dr = eV(i. A) (2.3) 
where dA/dt follows the particle, and is finite even if dA/at = 0. 

The subject of this article can now be introduced. Assume a coordinate frame whose 
rcomponentsarex,y,z,andauniformfieldBinthezdirection.ThenAcould bechosen 
as 

A = (0, Bx, 0) (2.4) 

so that from (2.3) a constant of the motion is mj + eBx to which any value p y  may be 
assigned: 

mj + eBx = p , .  (2.5) 
Now choosing some length a, the effect of the translation x + x + a is to replace A, 

by A, + eBa, described as a regauging of A ,  which of course leaves B unaltered. From 
(2.5) theconstantp,isshiftedtop, - eBa. Itfollowsthat themagneticenergy,dependent 
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only upon B ,  'must be independent of pu. This elementary application illustrates the 
practicality of a gauge argument, but it is in quantum mechanics that its full power is 
realized. 

The equation of motion (2.5), being no more than a rewrite of (2.2). is independent 
of gauge. It derives, using the standard rule, from the Lagrangian L given by 

L = &mi2 i e i . A ,  (2.6) 
Describingthetranslationx-x + abythegaugetransformationA-A + Vx, thenx = 
Bay. More generally, taking x as any scalar function of r (which clearly leaves B = 
0 x A unchanged), then L- L + e dxldt. This result holdsif x is explicitly time-depen- 
dent, though in that case the scalar potential e i  is added to L. Note that x has the same 
dimensions as magnetic flux @. 

Differentiating L with respect to i ,  j ,  i gives the components of momentump, 

p = m i +  d. (2.7) 
Clearly p depends upon the choice of gauge of A ,  so that adopting (2.4), the y 

component has been anticipated and appears as (2.5). whilep, = m i  andp, =mi. 

3. Magnetic quantization 

The next step towards quantization is the construction of the Hamiltonian H, from the 
canonical definition, 

H = p . i - L  (3.1) 

H = (1/2m)(p - d)*. (3.2) 

using L from (2.6), and m i  = p - eA, to give 

It is unnecessary to consider the classical Hamilton's equations since they can do no 
more than re-express the Lagrangian equations (2.3). The quantum view of (3.2) is to 
regard H as a mathematical operatorobtained by treatingp,andxasoperatorssatisfying 
the quantum commutator relation [ p 2 , x ]  = -iR, with similar relations for they and z 
momenta/coordinate pairs. An immediate consequence is that the transverse velocity 
components, U, = i and uv = p, quite generally, and independent of gauge, satisfy the 
commutator relation 

[U,, ur] = (ieR/m2)B. (3.3) 
This relation was the model for the Peierls magnetic quantization (see section 3). 

The commutation relations are satisfied by representing p in the differential form 
-ifiV. But the gauge discussion raises an ambiguity because (see equation (2.5)) 
pr - eEa is exactly equivalent top, and could equally be represented as 

p v  - eBa = -& a/ay. (3.4) 
This introduces the quantum version of the gauge change, namely as the transformed 
operator 

f i a  
I ay 

p V  = exp( - ieX/h) T- exp(ieX/fi) (3.5) 

where, as earlier,X = Bay. Quite generally, for any single-valued functionx(x,y, z )  the 
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gauge change A + A  + Vx is represented by the transformation exp[(ie/fi)x]. It does 
not follow however that solutions to the Schrodinger equation for different choices of A 
differ merely by a phase factor: quantum degeneracy complicates the issue. This is the 
main subject of the article. 

Aside from the transformation ( 3 . 9 ,  i.e. using p = -ihV, the eigenstates of the 
magnetic Hamiltonian (3.2) depend upon the choice ofA, although the energy spectrum 
of course depends only upon B .  A rotation of n/2 about the field direction provides the 
alternativechoiceA' = (-By,O,O), thedifferenceA - A '  itself beingagaugechange, 
namely, A '  - A  = V(Bxy). To repeat the above remark, (his does not mean that the 
corresponding eigenstates are convertible by a phase factor. When a cylindrical confining 
potential is added to (3.2), the combination $(A +A ' )  simplifies the azimuthal depen- 
dence of the bound-state wavefunctions. Pippard [3] gives an interesting discussion of 
the geometrical significance of rephasing for this choice of A. 

HV = (1/2m)[p: + @, - eBx)' + p : ] V  = E*. 

Taking then the Landau gauge (2.4). the Schrodinger equation becomes 

(3.6) 
Motion in the field (2) direction is independent of B and represented by the plane-wave 
factor exp(ik,z), where k, provides the eigenvalues hk,ofp,. Takinga quantizing length 
L, gives k, = (2z/L2) (integer). Omitting the k, factor, the transverse magnetic motion 
is represented by the so-called Landau wavefunction, written as 

VL(x,y; k y )  = exp(ik,y)u.(@'/*(x - p , / e B ) )  (3.7) 

where the scaling area e-' = (h/eB) and p, = hk,. Each function u.(g) consists of a 
Hermite polynomial of order n ,  multiplied by exp(-c2/2). The symmetry centre 5 = 0 
thus locates the Landau states at x = p,/eB. The eigenvalue E is independent ofp,, as 
anticipated by the gauge argument, and takes the allowed values ( n  + l)heB/m. 

An assumed length L, now provides the quantized values k, = (ZT/L,) (integer) and 
thereby a quasi-continuum of Landau centres (hk,/eB). Confining these to the interval 
x = 0, L,, it follows that the total number N of Landau states for any E is 

(3.8) 

(3.9) 

N = L, + (h/L,eB). 

N = Q, + h/e. 

Defining total magnetic flux Q, = BL,L,, N may be usefully expressed as 

The minimum value N = 1 requires Q, = h/e, which is therefore a kind of flux 
'quantum'. It refers, of course, to a given spin state. There is however no necessity for 
0 to be an integral number of such quanta, and, indeed, the above enumeration does 
not adequately deal with orbital centres hk,/eB very close to the boundaries. Questions 
relating to integral and more generally rational values of eO/h are raised more acutely 
for magnetic states in a regular crystal lattice (sections 6 and 7). 

4. Lattice electrons 

The preceding section has explained the relations between the translation x +  x + a, 
thegaugechangeA + A  + Vxand thequantumphase transformationexp(-ie,y/h). But 
all this was for the free charge whose quantum states can in any event be written down 
explicitly, and where the length a is perfectly arbitrary. These notions can be developed 
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for the ideal crystal lattice, with the constraint that translations must connect equivalent 
points in different cells. Before considering these more abstract notions it is worth while 
reviewing the elementsof Bloch theory and some established notions of magnetic motion 
in real materials. 

Transport in metal and semiconductors, as well as optical processes in the latter, are 
understood in terms of the energy spectra (or electronic band structures) based upon 
the quantum Bloch functions. These are propagating quantum siates characterized by 
a wavevector kB, and having the cell-phasing property 

V& + 4 = exp(ikB . W k E ( r ) .  (4.1) 

The smallest lattice vector U connects equivalent points in adjacent cells, but repetition 
of (4.1) gives the relative phase for any pair of cells. The wavevectorskB are enumerated 
(or quantized) according to the so-called periodic boundary conditions, namely that 

V c ( r  + L) = V,c(.) ( 4 4  

where the cell separation L is of suitably large magnitude. Historically, Peierls and 
others showed that enumeration using physical boundaries, having electrostatic and 
otherasymmetriceffects, would not beappreciablydifferent. Magneticgauginghowever 
requires attention to the use of the periodic boundary condition (section 7). 

Thegeneral theory ofBlochstatesshowsthat, withinthe Brillouinzone, a polyhedron 
in kB-space whose plane boundaries arise from exp(ikB. a)  = 2 1, there can be many 
states having a particular kB. The zone kB-values broadens each of these into a band of 
energy values with a characteristic density of states function. Magnetic dynamics has 
employed a variety of perturbative models based on electronic bands and Bloch state 
matrix elements. Their utility depends upon both the physical structure, that is, metal 
or semiconductor, and the effect, which coud be magneto-transport or magneto-optic. 

Peierls was the first to direct attention to electronic band diamagnetism, introducing 
a powerful method of magnetic quantization. In a non-degenerate band, the band 
energies are a unique function of the quasi-continuous wavevector kB. Near the centre 
or edge of a Brillouin zone this dependence is typically quadratic (not necessarily 
isotropic), but more deeply within, a higher power dependence is appreciable. Alterna- 
tively, because the zone structure is repetitive in kB-space, the band energies can be 
Fourier-analysed. However represented. Peierls quantization replaces kB by a vector 
operator K whose components do not commute but satisfy the relation (3.3), with mu = 
i i ~ ,  that is to say, 

[ K ~ ,  K~ J = (ie/h)B. (4.3) 
So long as there is no ambiguity arising from the ordering of K,, K ~ ,  the resulting 
expression can be used for an effective energy band Hamiltonian operator (see section 
8). In connection with the oscillatory diamagnetism in metals (de Haas-van Alphen 
effect), Onsager [4] ingeniously employed (4.3), making use of the WKB approximation 
in the form. 

J K~ dxV = (n + y)eB/h (4.4) 

in which the integral is taken over a closed cycle near the Fermi surface, to determine 
the eigenvalues E,,(k,). An authoritative account of this basic theory is to be found in 
Shoenberg [SI. 

The original arguments for the quantization rule (4.3) were based upon the so- 
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called ‘tight-binding’ Bloch function model (9). It is in fact more general, and gauge 
transformation theory is helpful in revealing this. 

In semiconductors, transport and optical properties commonly require multiband 
models. Their structure is more important than the Fermi surface, and is the subject of 
extensive computation. The well established semi-empirical k,  * p method was extended 
by Luttinger and Kohn [6] to include a magnetic field, and has provided a practical way 
to handle complicated spin-orbital magneto-band structures. An important application 
to magneto-optics of InSb is due to Pidgeon and Brown [7]. 

5. Magnetic gauge transformation 

The notions of magnetic gauge transformation and Bloch translational theory are now 
to be combined. It is evident that the imposition of a uniform magnetic field on an ideal 
crystal does not disturb its repetitive nature: within each cell is the same magnetic field 
added to the same electrostatic field. But, as for free charge, the electron Hamiltonian 
isnotinvariant because,in the translationr+ r + a, thevectorpotentialA(r)isregauged 
toA(r) + A @ ) .  This change isequivalent to the phase transformation ( 3 . 9 , ~  = A(a) . r, 
which replaces -ihV by -ihV + eA(a). 

Anticipating a similar degree of degeneracy as described above for free electrons, 
and enumerating the states of common energy by the index p, it follows from (3.5) that 
vp(r + a) satisfies the same equation as any magnetic phased state 

If these could be equated then the translation r+ r + a, equivalent to a gauge change, 
would be represented by the magnetic re-phasing. Because of the degeneracy the best 
that can be asserted is the linear relation, 

where the matrix ((P’I%(a) ID) is yet to be determined. For each basic lattice vector a, b, 
c there is a matrix %(a) represented in a space whose dimensions and other features have 
yet to be determined. The translations r+ r + a and r+ r + b of course commute; 
because of the path-dependent phasing transformation, the matrices %(a) and %(b) 
however may not commute. In fact, it follows from (5.1) that quite generally, and 
independent of representation, 

%(b)%(a) = exp[(ie/h)@, ]’C(a)%(b) (5.2) 
where ‘p, = B .  a x b is the magnetic flux through the cell area a X b. Equation (5.2) [SI 
thus generalizes the commutative identity which in the absence of a magnetic field allows 
the Abelian representation of the translation matrices, namely %(a) = exp(ik,. a). Of 
course, closing any sequence of lattice translations, the % matrices restore the original 
state but with a relative phase cancelling that due to the phasing factor in (5.1). 

The connection of (5.2) with the Peierls quantization can now be seen with the help 
of a useful algebraic rule (Weyl’s identity), which states that if the commutator of two 
operators P, Q is a c-number, say [P,  Q] = c, then exp(7) exp(Q) = exp(c) exp(Q) 
exp(P). Putting%(a) = exp(irc. a)  and%(b) = exp(irc. b),theniftheoperatorKsatisfies 
(4.3),expressedmoregenerallyas~ X U = ieB/h,itfollowsthatexp(irc .a),etc.,satisfy 



3054 P G Harper 

(5.2) identically, and can be used to represent %(a), etc. Thus, rather abstractly, 

q(r+ a) = exp[i(K * a  + d ( a ) .  r)/h]qf(r). (5.3) 

Of course, replacing kB in a band energy by K is an approximation valid only under 
special conditions and needing further justification (see section 8). 

The periodic boundary condition (4.2) cannot be applied to magneticstates because 
there is a necessary phase factor exp[ieA(L) . r/h] .  But it is reasonable to insist that the 
same state I& be recovered after q translations in a transverse direction a (see section 7 
for determination of 9): 

r q 4 1 9  = (e(qa) = I. (5.4) 

Takingthe loopof translationsqa, b, -qa, -b(assumingbalso transverse) requiresthat 
exp(iq@P,/h) = 1, that is to say 

Bqab = q@p, = ph/e p = integer. (5.5) 

The periodic condition (5.4) thus requires that the cell flux OC should be a rational 
fractionp/qofthefluxquantumh/e. Nowh/e = 4.136 X 10-15T m2so that taking acell 
area ab - lo-?" mz and a largish field of B G 10 T, requiresplq - lo-". 

The interesting question is immediately raised concerning incommensurate values 
of e@,/h, for which the states can never be repeated by cell translation and would 
therefore appear to be non-denumerate. The consequenccsfor energy spectra are taken 
up in sections I and 8. 

The periodic boundary condition (5.4) may be applied along one axis, but what of 
the other two? For an arbitrary orientation of the magnetic field, further difficulties of 
commensurability arise and do not appear to have been thoroughly examined. Most 
theory in fact relates only to E aligned with an axis (the I direction) with assumed 
orthorhombic structure, that i s n l  b 1 c. Pippard [3] however has a thorough discussion 
of non-cubic crytals. These limitations in fact have been tacitly imposed in the preceding 
discussion, and will continue so. Thus the non-magnetic periodicconditions will be used 
for motion in they and z directions along with a particular gauge choice, namely A = 
(0, B x ,  0). 

The dimensions of the % matrices are more directly dealt with from the particular 
representation introduced in the following section. 

6. The k-representation 

The gauge transformation matrices %(a), Y(b) and %(e) introduced in (5.1) and oper- 
ationally defined by (5.2) have already been related to the Peierls quantization through 
the correspondence or isomorphism %(a) + exp(irc .a) ,  etc. But this abstraction leaves 
their dimensionality and space undefined, and although a differential representation of 
the commutator [ K ~ ,  K,] = ieB/h is easily constructed (see section S), it is preferable to 
find matrices enablingthe construction of the magnetic states. 

The above form suggests that the unspecified p label should in fact be a wavevector 
k (not to be immediately identified with Bloch ks), %(a) being necessarily non-diagonal. 
The matrices are easily discovered, and may be written 

(6.1) (k'l%(a)lk) = exp(ik.o)d[k' - k +  eA(a)/h] 
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with similar expressions for %(b) and %(c). Simple matrix multiplication confirms the 
non-commutative rule (5.2), recognizing that A @ ) .  b - A @ ) .  a = E .  a x b. 

Denoting the k-labelled magnetic states by p(r; k )  (omitting any other quantum 
labels), then for any basic latticevector, the translationr-r r + aisrepresentedexplicitly 
by 

(6.2) 

The expression (6.2) holds generally for any type of crysral, and for any orientation of 
B ,  represented by any gauge of A. But as earlier explained, it is simpler to suppose that 
a = (a, O,O), b = (0, b, 0), e = (O,O, c) with A = (0, Bx, 0). Setting out (6.2) for each 
direction, the translations become 

V ( x  + a,y,z;k,) = exp(ik,a) exp[(ie/fi)Bay]tp(x,y, z ;  k,, k, - eBa/fi, k,) ( 6 . 3 ~ ~ )  

V(r + a: k) = exp(ik. a) exp((ie/h)A(a) . r ]v(r ;  k - eA(a)/fi). 

(6.3b) 

(6.3~) 

Evidently (6.3b) and (6.3~) resemble the non-magnetic Bloch relations (4.1), 
allowing us to use conventional y, z dependence such as plane-wave or tight-binding 
models, taking k; = (kz)B. 

Regarding (6.3a), the shift ky+ k, - eBa/fl required by the translation x-+ x + a 
resembles (3.4) namely p,-+p, - eBa, and suggests that the non-magnetic cor- 
respondence of the free particle p, with the Bloch state fik, holds also in the magnetic 
domain for hk,. This relationcan be pursued by considering the translational behaviour 
(6.3a) in free-space motion, where of course the displacement a is arbitrary. 

For the present limited application of (6.2), the field direction motion may be 
disregarded, and only the k,, k,  dependence of V(r;k) retained, writing 
V(r;  k)  = V ( x ,  y; kx, k,). As has been explained, equation (3.7), a Landau free-particle 
magnetic state ?pL is localized about x = fik,/eB, so that there is positional degeneracy 
N = eQ/h where Q is the magnetic flux over the quantizing area. The localized Landau 
state is therefore only one of many choices, with thepossibility of other spatially prescribed 
form. Now the translationx+x + ashiftsp, top, - eBa, formally described in terms 
of VI. by 

?pL(x + a,y; ky) = exp[(ieBa/fi)y]v~(x,y; k, - eBa/fi) .  (6.4 

This expression differs from (6.3a) by the absenceof k,in y~,and the propagatingphase 
factor exp(ik,a). With one provision (see section 7), the degeneracy now allows the 
construction of alternative free-particle states, 

where ra must lie in the quantizing length L, and the v-notation has anticipated the 
translational property (6.3~~).  Such a combination of phased Landau states has the 
potential to describe a transverse current; but that requires an energy coupling, provided 
by the lattice potential (section 8). These considerations suggest that k, and k may be 
safely equated. 
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7 .  Commensurability 

Elementary statistical mechanics supposes that all spectral energy densities are the 
consequence of denumerable quantumlevels. But ergodicoraperiodicquantum systems 
studied at a computational level can show remarkable and unexpected structures of a 
chaotic or fractal character [ I ,  91. The quantum magnetic motion dealt with here can 
provide a tradable instance of such an aperiodic action and has received some attention. 
It is essentially a mathematical topic, outside the intentions of this article; no more than 
its background is sketched here. 

The periodic boundary conditions discussed in section 5 place a constraint on the 
ky-values. It is necessary that the displaced value ky - eBa/ti should be a permitted 
quantized value, that is to say 

eBaJti = A k / L ,  (7.1) 
where A is some integer. This is additional to the flux requirement (5.5), expressed here 
as 

QC = Bab = @/q)h/e. (7.2) 

9 = @/A)L,/b (7.3) 

Evidently (7.1) and (7.2) are compatible only if 

and this fixes the quantizing length L, = qa. For example, a square section L, = Ly of a 
cubic lattice. b = a ,  requires,'. = p .  

The number of degenerate Landau states was shown, equation (3.9), to be equal to 
the number of flux quanta N .  From (7.3). it is seen that 

.... 
(7.4) 

It follows that a commensurate system, wherep, q, A and N are all integral, is periodic 
in its spatial behaviour. 

Under these commensurate conditions, the quantized valuesof k,, k,are enumerated 
as 

The integral values ofp, q,  A and N needed to satisfy (7.1)-(7.4) are unlikely to be 
found in a material sample in an arbitrary field. Mathematical periodicity is thus not 
guaranteed and it would seem an open question whether measurable dynamic effects 
arise. To deal with the problem requires numerical investigation of an actual system, 
and this is the subject of the succeeding section. 

8. Magnetic energy broadening 

The k-state translation (6.2) dictated by the gauge transformation allows a formal 
representation of v(r; k), namely 

*(r; k) = exp(ik. r)U(r; k - (e /h)A(r))  (8.1) 
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where U(r + a; k) = L'(r; k), that is to say, U(r; k) has the periodicity of the lattice, 
and could be written as a Fourier series. It is easily confirmed that if the magnetic 
free-particle state (6.5) is presented in this way, there is no periodic dependence. An 
alternative to Fourier representation isanexpansion basedonBlochstatesof the lattice, 
and it has been shown [lo] that this is equivalent to the Luttinger-Kohn theory [6] 
mentioned in section 4. 

At any rate, to study the magnetic energy levels, some model conforming to (8.1) is 
needed, and the choice depends upon the crystal (metal, semiconductor), and physical 
features of interest (Fermi surface, band structure). 

With the possible exception of the quantum Hall effect (section 9), semiconductor 
magneto-optics has not drawn much upon gauge theory, although, as mentioned, the 
quantum states conform entirely to its requirements. For metals, the early interest was 
in steady and oscillatory diamagnetism [SI, with developments in magneto-resistance, 
largely the work of Pippard [3]. In metals, and semimetals such as Bi, the consequences 
of electron drift, mentioned in section 6, seemed particularly interesting. 

Before examining models of the form (8.1) for their energy eigenvalues, some 
features can be anticipated. Since k and k - eA(a)/h refer to degenerate states, the 
relation E(k - eA(a)/fi) = E ( k ) ,  implies a periodic dependence of E(k)  upon k. In the 
present gauge (2.4), this would provide the period eBa/h for ky, and since the gauge 
A' = (-By, 0,O) is equally acceptable, k,must have the identical period. 

A simple application of (6.5) confirms this energy periodicity in kx, ky. Since the 
states already have the correct translational symmetry corresponding to an isotropic 
lattice period a ,  the energy due to a weak lattice potential can be immediately calculated 
from first-order perturbation theory. Assume then a weak lattice potential of the sep- 
arable model form, 

V(x,  y) = V[cos(Znx/u) + cos(zny/a)] (8.2) 
and consider 

E(k,,k,) = J  drdyIW(x,y;k,,kY)l2V(x,y). (8.3) 

Recollecting that the Landau states are centred atx = hky/eB then the contribution 
to (8.3) from cos(Znx/a) is given by 

(8.4) 

showing the expected periodic dependence upon k,. with the period eBu/h. For the 
second term in (8.2) the y-integration of cos(Zny/a) must phase-match with exp(ik,y), 
exp[i(ky * k/a)y] ,  and therefore connects the Landau states with centres separated by 
fi(Zn/a)/eB and with the relative phase factor (from (6.5)) of exp[ikxfi(2n/u)/eB] to 
give the contribution 

The integrals in (8.4) and (8.5) are identical (a Fourier transform property of Hermite 
polynominals), and denoting the value by F,  then 

(8.6) E(k,, ky) = FV[cos(hk,/eBu) + cos(fik,/eBa)]. 
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In this expression the values of k, and k, are given by (7.5) (assuming the commensurate 
relations (7.1)-(7.4)). and are quasi-continuous. From the limits in (74, the full cycle 
of values is permitted. Thus each discrete Landau level is broadened, with a width set 
dimensionally by the lattice potential, but reduced by the overlap integral (8.5). This 
lattice broadening is additional to collision broadening described by Dingle [ 111. 

One of the benefits of the free-space magnetic states (6.5) is that, although not yet 
current-carrying states, the gauge translation symmetry organizes their degeneracy into 
the current-carrying form. It was shown [8] that the mean velocities (ox). (U?) are quite 
generally given as 

(ox)  = h-l (aE/Jk,)  ( U ? )  = h-' dE/dk,. (8.7) 
Direct calculation of (U,) = (pv - eBx)/m would in fact require at least first-order per- 
turbed gauged functions, but (8.7) gets there more quickly. 

Formula (8.5) shows that the current is proportional to the overlap of Landau states 
separated by 2jrh/eBa. The integral F in (8.6) describes a quantum tunnelling and 
increases with orbital radius ( ~ h / 2 e B ) ' ~ .  The latter approaches the semi-separation at 
an orbital energy nhw, = (ri'/2m) (z/u)', that is to say, at the energy needed for Bragg 
reflection. Here quantum tunnelling between orbits becomes easy and it  is this aspect, 
from the analogy with Zener tunnelling, that provides the misleading name 'magnetic 
breakdown'. The effect assumes a special importance in connection with magneto- 
resistance. an area of solid-state physics much developed by Pippard. 

The weak potential model serves to estimate the k,. ky level broadening but is 
inadequate for further development. Atomic tight-binding 1121 is a complementary 
model that often produces useful and credible results even though it is somewhat far- 
fetched. It resembles molecular orbital theory in that the wavefunction is composed 
of local atomic states regarded as approximately orthogonal. Used to model Bloch 
functions, each lattice cell is phased according to (4.1). but for magnetic states based on 
(&I) ,  Ueffectively appears as an envelope function, defined only at lattice points. 

The model supposes a cubic lattice. each cell containing one non-degenerate atomic 
state. written as w,, where ( I I ,  I , ,  L3)a locates the atomic centre. Most metals are close- 
packed structures but hexagonal symmetry complicates the commensurability restric- 
tions (7.1)-(7.4), and obscures more elementary features. 

For each state w, the vector potential is gauged to its local cell value providing the 
overall phase factor 

(8.8) exp(ik. Zu) exp[h-'ieA(Zu). ( r -  la)] 

and modulated by an envelope function, written as 

rr(k - eA(Za)h). 

Using the simpler notation of section 6, and omitting the k,  dependence, i.e. the sum 
over 13, the transverse kx, ky state becomes, making use of LY = eB/h, 

V J ( . X , ~ ;  k,, k y )  = 2 exp(ik,l,u)u(k,, k, - d , a )  exp[i(k, - d , a ]  
11.12 

x exp(idluy)w,,,l,. (8.10) 

Thetranslationx-,~ + aequivalentlyreplacesthesitcI, byl, - 1. Rewriting thrindex 
I ,  as I ,  + 1 evewhere  in the sum effectively changes kv into ky - LYU and prefaces 
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the sum with the factors exp(ik,a) exp(iaay), thus meeting the gauge transformation 
requirement (6.3a). 

The problem then is to determine U regarded as a function of ky, with a parametric 
dependence on k,. In calculating HI# as in (3.6), the effect of the gauge factor in (8.8) is 
to replace p, - eBx byp, - eB(x - / ,a) ,  which, since w11,12 is localized about x = 11, a, 
is approximated byp,. The kinetic energy of the state (8.10) is thus taken as its unper- 
turbed crystal value, Eo, though there are clearly small magnetic corrections. Tight 
binding supposes that the lattice potential connects cell state I , ,  I2 with nearest neigh- 
bours I ,  ? 1, l2  and I , ,  I ,  ? 1. The factor exp(icullay) is assumed not to impede this 
selection rule. 

The magnitude of the matrix element coupling neighbouring sites is the atomic 
overlap integral (denoted by E,/2), which provides the electronic band width. The 
amplitude u(k,, ky - adla) is then coupled to each neighbouring amplitude 
u(k,, ky - a([ ,  2 1)a)with thephasedelementiE, exp(?ik,xa). Thephasingcomesfrom 
the form (8.10), whichmeets thegaugingrequirement andcomesintoeffect in expressing 
the magnetic periodic boundary condition. Nearest neighbours (/2, I, 2 1) in the y 
direction take the same amplitude u(k,, ky - d , a )  but now become coupled with a 
position-dependent magnetic phase, thus providing the important modulating factor 

cos[(k, - d , a ) a ] .  

The resulting eigen-equation can be written 

exp(-ik,a)ur+, + exp(ik,a)u,_, + 2cos(laa2 - k,a)ul = t u l  (8.11) 

where for simplicity u1 stands for u(k,, k, - d , a ) ,  and E is a dimensionless eigenvalue, 
namely the energy difference E - Eo in units of the bandwidth energy E,/2. The 
equation, originally introduced in this magnetic context [SI, in fact has a wider physical 
significance and has provided a useful instance of phase holonomy [l, 221. 

Recollecting the definition of (Y, 

ma2 = 2z(e/h)QP, (8.12) 

the discussion on the commensurability condition eQ/h = p/q (equation (7.2)) is illus- 
trated by the form of (8.11). The cyclic boundary applies to uI in that uI-q satisfies the 
same equation as ul. In dealing with (8.11) it is common to take k, = 0, but this merely 
amounts to a redefinition of u1 to include the phase factor exp(ik,la). With the choice, 
uItqmust be taken asexp(ik,qa)ul. Either way, k,entersparametricallyinto E ,  and from 
the earlier discussion, (8.6) plays a broadening role. 

When eQe,/h is not a simple rational fraction p/q, the cyclic boundary condition 
cannot be applied, quantum phase is not repeated, and the system is described as non- 
holonomic. It is here perhaps that (8.11) becomes of greatest mathematical interest. 
The computations of Wilkenson [13] show the strange ‘butterfly’ spectral patterns that 
have been computed. Stinchcombe and Bell [14] have discussed the categorization of 
the various spectral bands, allowing for a scaling factor A, which physically corresponds 
to a lattice anisotropy. Lovesay [E] has also treated solutions of (8.11). 

u(k,, k, c aa) = exp( i aa  a/ak,)u(k,, k,) 

which enables (8.10) to be presented in the operator form, 

iE,{cos[a(k, + ina/ak,)] + cos(ak,)}u(k,, k,) = ( E  - Eo)u(k,, k,). 

There is yet another view of (8.11). Formally u(k,, ky i- a)  can be written as 

(8.13) 

(8.14) 
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Effectively, in the nonmagnetic band energy k, has been replaced by the operator K,, 

(8.15) 
Thus for the simple cubic band, Peierls' intuitive notion is confirmed, with the K- 
representation fully justified and explained. In the Onsager method for finding its 
eigenvalues, formula (4.4), the value of the phase constant y is to be found from amore 
detailed examination of the turning points WKB theory. Wilkenson has discussed this 
in connection with the solution of (8.11). Pippard [3] has also discussed its physical 
significance. 

K, = k, + iea/aky. 

9. Quantum Hall effect 

Some explanation is needed for this section, which issomewhat peripheral to the main 
theme of the review. But existing Hall effect theories have drawn upon gauge notions, 
typified by that of Thoulessetal[lS], which work with extended wavefunctions satisfying 
the translational conditions (6.2). Other theories [U] have emphasized magnetic flux 
conservation, viewed as a gauge property. Current-carrying states, already discussed in 
the gauge context, are used here to provide a view of the quantum Hall effect. 

Metals and semiconductors are characterized by their resistivity and mobility, and 
transport theory is therefore a major study in solid-state physics. The addition of a 
magnetic field can assist to measure parameters such as effective band mass. Pippard 
[3] has dealt comprehensively with this topic. The Hall effect in semiconductors is 
particularly useful in distinguishing the sign and density of charge carriers, and the 
elements of the theory (though sometimes complicated by multiband effects) could 
hardly be simpler. Regarded as a conductor, a current in a perpendicular magnetic field, 
under open-circuit conditions, can produce a transverse voltage proportional to current 
and field. Using (2.2). then under stationary conditions, f = 0, the Lorenz force must 
be balanced by a reactive electric field namely, E, = BY. Denoting the carrier density 
by v ,  then the current density J, is simply vey, giving the Hall field E, as BJlue, that is, 
the Hall constant R = l/ve. There is particular interest in very thin samples, where the 
field direction L: < L,, L,. Taking the surface current as I = L,J,, and supposing v to 
denote now the surface carrier density with the Hall voltage V ,  = E&,, then the Hall 
conductance (actually a non-diagonal element of the conductance tensor), becomes 

IjV, = ev/B. (9.1) 
In the quantized version, including the reactive electric field, the two-dimensional 

magnetic free-carrier Hamiltonian (3.2), (3.6), becomes 

HE = (1/2m)[p: + @, - ~ B X ) ~ ]  + eE,x 

[ u s ,  HE] = ihe(Bu, - Ex).  

(9.2) 

(9.3) 

whence 

For every eigenstate of HE, the expectation value of the commutator is identically zero 
so that (U" )  has the h e d  value 

(0,)  = &/B. (9.4) 
Regardless of level density, the current is veu, so that magnetic quantization would 
appear to have no effect. 
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The startling result of von Klitzing [16] showed that, at low temperatures, in thin 
samples of low mobility (disordered structures), and sufficiently large L,, instead of the 
monotonic field dependence of (9.1) there could occur a discontinuous, step behaviour, 
very accurately expressed as 

I/VH = (e2/h) integer (9.5) 
with the discontinuities occurring when the Fermi energy 5 is a half-integral multiple of 
heB/m = hw,. The physics of this ‘quantum Hall effect’ is further complicated by later 
discoveries that simple fractional values of e2/h can also occur. 

Theories of (9.5) invoke flux quantization, i.e. the notion (3.9) that if N is to be 
integral, then the flux Q, can change only by the minimum fixed amount h/e. As 
explained, this is true in the sense that to accommodate in additional electron, N = e@/ 
h, must change by unity. Thus Laughlin [17] argues that eVH is the energy needed to 
transfer one mobile carrier across the sample, i.e. the translation x 3 x + L,. But this 
is also a gauge change A,  A,  + eBL,, which, since @ = .f A . dr, is equivalent to a flux 
change. Taking this as h/e their ratio gives immediately I = (e2/h)VH per transferred 
electron. Localized electrons can provide a source/sink, and it is concluded that the 
explanation of the quantum Hall effect lies in gauge invariance. 

The difficulty is that flux is independent of gauge and that for electron transfer (as 
distinct from adding/removing an electron) its quantization, like the other com- 
mensurability relations of section 7, is only a useful idealization. 

The Hamiltonian HE remains a stumbling block since it provides the same velocity 
(U,) = E,/B for every electron. This stubborn feature can be modified if a localizing 
potential is added which serves as a source or sink of electrons to provide the observed 
flat behaviour of Z/VH. Other Hamiltonians have been used to calculate the conductivity 
tensor [15]. One can argue however that Laughlin’s transfer energy is better described 
as the difference in chemical potential (Fermi energy) across the sample due to the 
imposed current I .  That is to say 

c(v, B ,  r) = cO(v, B )  + eVH(r). (9.6) 
The Fermi energy 5 is now calculated in the conventional way as the population limit (at 
zero temperature) of levels defined not by HE but by a Hamiltonian describing an 
imposed coherent current. The necessary Lagrangian is most directly obtained in the 
present Landau gauge from the replacement j + j  + U, where as before the surface 
current I is related to U through I = evL,u. From its definition (3.1) the resulting 
Hamiltonian H ,  becomes, in contrast to (9.2). 

H, = (l/Zm)bz + ( p y  - e B ~ x ) ~ ]  - up,. 

(n + $)hw, - uhk,. 

(9.7) 
The identity ( [ y ,  H,]) = 0 gives (U,) = U for every eigenstate of (9.7). Since p ,  remains a 
constant of the motion the eigenvalues of (9.7) are 

(9.8) 
Thus, for the current Hamiltonian H0, the k, degeneracy is removed. By populating the 
current states n = 0 . 4  = (-?id,) (1,2,3, . . .), the Fermi energy t can now be varied 
continuously between$hnw,and $hut, though to attain the$hw,value, the N value (3.8) 
requires a minimum strip width L,, 

L, b h/mo. (9.9) 
Since the oscillator centres are at hk,/eB then for positive carriers, e > 0, x = -L, is at 
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a positive potential relative to x = 0. This agrees with the sense defined by the classical 
model. 

Assuming (9.9), and spin-polarized states (but neglecting Zeeman level splitting), 
then equating the number of available states, namely ( 5  - bhw,)L,/hu, to the number 
of surface carriers uL,L,, and using I = erwL,, it follows that for Ihw, S 5 S %U,, 

(9.10) 

Populating beyond $Rw, brings in then = 1 levels, providing a further number of states, 
(t - #hw,)L,/hu, which added to (9.9) gives for ihw, S 5 < t h w ,  

(9.11) 

1; - biw, = (h/e)l. 

1; - hw, = (h/2e)I. 
Quite generally for (n + I)Rw, < 5 < (n + $)hw,, the Fermi energy is obtained as 

.$ - i ( n  f I)hw, = [h/e(n + l)]L (9.12) 

In accordance with (9.6), the I dependence of 1; is to be attributed to the induced 

(9.13) 
where n = 0, 1,2, . . . is now identified as the Landau quantum number. The Fermi 
energy t i s  continuous, but ac/alchanges discontinuously at 5 = (n + l)hw,. 

Carrier localization, regarded as necesary for localization, does not directly appear 
on this model. However, the dimensional condition (9.9) evidently excludes the zero- 
current configuration U = Ofor which the k,statesarealldegenerate. Toavoid unphysical 
discontinuities in to it would seem necessary to assume that a realistic two-dimensional 
Hamiltonian should permit non-current-carryingstates with energies in the mobility gap 
as Laughlin supposes. 

The gauging translation x ---f x + a accompanied by the replacement p y  -+py - eBa 
doesnot leave thecurrent Hamiltonian H,invariant butshiftsit byeBau. Thisisexpected 
in view of the potential difference transverse to the current. The fundamental gauging 
relation (5.2) appears to remain intact provided that the energy shift eBau corresponds 
to a permitted energy. With the periodic lattice potential present, taking a as a cell 
translation, the commensurability conditions (7.1) and (7.3) may need re-examining, 
and may throw light on the difficult problem of the fractional quantum Hall effect. 

Hall voltage V,, establishing that I / V H  takes the quantum values (9.5), namely 

I /VH = (e2/h) (n + 1) 

10. Other gauge considerations 

This article may be concluded with brief comments on the use, in other solid-state 
contexts, of gauge invariance. It refers to the notion, introduced in section 2, that the 
quantumrelationp = mu + eA remainsunaltered under thegauge changeA -P A + Ox, 
and transformation exp(iex/h). One of the criticisms of the BCS theory of super- 
conductivity 124,261 was the extent of its disregard of the principle. 

In theearly theoriesofsuperconductivityit wasproposed by Bloch that in theground 
state. the statistical expectation value ofp should vanish, that is 

(Ps) = 0 (10.1) 

U, = - (e/m)A. (10.2) 
giving a supercurrent velocity U,, 
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which in terms of the supercurrent density J ,  = v,m, provides the Meissner relation 
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J ,  = - ( @ / m ) A .  (10.3) 

The quantum mechanical relation between A and current density J for a single 
electron is provided as 

J = (efi im) Im(yr*Vly) - (e’/m) IVl’A. (10.4) 

Under the general gauge change, A + A  + Vx, the current density J(r)  remains 
invariant, provided that in (10.4), 

w -r w exp(iex/fi). (10.5) 
This gauging freedom is incompatible with (10.1)-(10.3), which require 01) = 0 with 
vs = 1y1’,JS = J .  Itwasinfactshown,(Buckingham[27]). thatin(10.4)asumrule,itself 
derived from gauge considerations, ensures that the final term is cancelled identically 
from the V v  terms, leaving only a normal diamagnetic contribution to J proportional to 
V’A. 

More realistically, to fit his penetration depth data, Pippard 1191 found it necessary 
to replace (10.3) with a non-local relation, later confirmed by the microscopic BCS 
theory, which was itself shown to be consistent with the Ginsburg-Landau order theory 
(Tinkham [18]), at least near the critical temperature. 

The phase of t / ~ ,  the basis of the interferrometric flux properties of Josephson 
junctions, is directly displayed by writing the complex order parameter as, 

VJS = I ~ S I  exp(irp) (10.6) 
giving the supercurrent velocity from (10.4) with tp+ ys, as 

0 = m-’(hVq - eA). (10.7) 

The phase rp(xyz) need not be single-valued so that Vrp is (in general) irrotational, that 
is. V x Vq # 0; for example, T) = x + iy for which Vrp = ( - y ,  x ,  O ) ( x 2  + y’)-‘. For a 
loop Cabout theorigin thecircuit integral ofVq is2n and, quitegenerally, thecirculation 
phase change is a multiple of k, 

IC Vrp . dr = 2n(integer). (10.8) 

The gauge transformation q+ rp + ex/fi, A + A  + Vx leaves (10.6) and (10.7) 
unchanged, and fluxoid (so-called) quantization then follows from (10.6) by con- 
sideration of Q = .fcA . dr. 

As a final thought it has been suggested (Zak [21]) that the Berry geometric phase 
[20] is connected with gauge rephasing. It would be interesting to confirm this and 
establish the precise relation. 
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